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Interaction of two solitary waves in a ferromagnet 

H Leblond 
Instimr de Recherche Math6matique de Rennes, URA-CNRS 305, Universit6  de^ Rennes I. 
Campus de Beaulieu, 35042 Rennes Cedex, France 

Received 8 March 1995 

Abstrad. A type of solimy wave in a ferromagnet is found by a multiscale expansion method; 
it obeys the completely integrable Korteweg-de Vries equation. The interaction behveen a wave 
of this propagation mode and another known mode that also allows soliton propagation is studied. 
The equations describing the i n t a t i o n  are derived using a multiscale expansion method and 
then reduced to an integral form, and solved explicitly for particular initial data for which one 
of the waves oy1 be considered as a saliton. A phase shift of this soliton apoears. Transmission 
and reflexion coefficients are computed for the second wave. 

1. Introduction and generalities 

Propagation of electromagnetic waves in ferromagnets has generated much interest, 
especialIy in relation to ferrite devices at microwaves frequencies [l]. This subject was 
extensively studied from the h e a r  viewpoint in the 1950s and 1960s 121 and in connection 
with the theory of ferromagnetic resonance [3,4]. However, this problem is intrinsically 
nonlinear. Development of soliton theory and the multiscale expansion method [5,6] 
allowed new studies to be completed 171. Recently, using these methods, Nakita [8] 
discovered a type of solitary wave that is governed by the modified Korteweg-de Vries 
(mKdV) equation. 

Following this work I studied nonlinear wave propagation in ferrites, especially the 
focusing or defocusing of a quasi-monochromatic plane wave that is described by the 
nonlinear Schrodinger (NLs) equation 19, IO]. I also studied the resonant interaction of 
three waves [Ill.  As I was seeking the equations describing the non-resonant interaction 
of two quasi-monochromatic waves, an interesting feature arose: the ‘constant’ term in 
the Fourier series expansion of the waves appeared to be very imporrant, allowing soIitary 
waves to propagate and interact with fast oscillating waves. 

This paper intends to clarify the properties of these solitary waves and is organized 
as follows. In section 2 we recall Nakata’s results, using our notation and adding some 
comments and personal observations that will be useful for comprehending the rest of the 
paper. In section 3 we describe a propagation mode that is governed  by the~Korteweg- 
de Vries (KdV) equation. In section 4 we derive the equations that govern the interaction 
between the two solitary waves. Section 5 is devoted to a resolution of this equation. A 
qualitative conclusion is given in section 6. 

2. The mKdV mode 

A mode of nonlinear solitary waves in ferromagnets was discovered by Nakata in 1990 
[SI. He used a classical model in which the evolution of the magnetic field H and the 
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3764 H Leblond 

magnetization density M is described by the following equations: 
1 

c2 * -V(V. H )  + AH = -aZ(H +M) 

&M = - S h M  A H.  
Tbroughout this paper, we will use the notation a,u for the partial derivative of U with 
respect to the variable x .  S is the gyromagnetic ratio, and c = I/@ is the speed of light 
based on the dielectric constant of the ferromagnet. Indeed, it is assumed that the electric 
field E and the electric induction D are related by the linear relation D = EE. 

This model is commonly used to describe wave propagation in ferrites, particularly 
at microwave frequencies [1,2]. The model neglects the finitesize effects of the 
inhomogeneous exchange interaction, of the sample, and the efforts of damping. For the 
sake of simplicity, werescale M ,  H, t into poS/cM, poG/cH, ct, respectively, and obtain 
the equations 

(3) 
a,M = - M A H .  (4) 

- V(V . H )  + AH = $(H +W 

As in [SI, let us first derive the dispersion relation corresponding to the system (3) and 
(4). The system is linearized about a constant solution 

Ma=m=(: )=(nzsF i )  mcosp 

Ho = rum 

and we look for solutions proportional to expi(kx -ut). The dispersion relation reads as 
follows. 

= (I-;>”.. (7) 

This relation presents three branches of which two approach the point k = 0, o = 0 with a 
finite slope U = o/k. The two values of thii phase velocity U are 

U *  = /& 
and 

u 2 = J  a+s in2v  . 
1 +a 

For very small values of o and k with a finite value of U = w/k, the oscillating wave 
(described by the solution s(kr-a)) gives rise to a solitary wave solution (of the form 
f ( k x  - ut) with f vanishing at infinity). The nonlinear behaviour of the solitary wave 
corresponding to U ,  has been studied by Nakata, the wave with velocity u2 is studied in 
section 3 of this paper. 

The expansion of o / k  about the value U I  in  a power series of k, assumed to be small, 
suggests that we introduce the stretched variables 
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where E is a small parameter. M and H are expanded in a power series of e: 

3765 

M =MO +EM, +&2M2 + . . . 
(11) 

and the quantities Mj and Hj are assumed to be functions of the stretched variables < and 

I H = H~ + E H ,  + E > H ~ +  ... 

t. 
The boundary conditions are 

and 

for j # 0. They assume that, at a large distance from the region where the wave is localized, 
the fields tend to the static state (5) and (6). Practically, the sample of ferrite is immersed 
in a constant field He,,. The corresponding magnetic field am inside the sample depends 
on the shape of this constant field through demagnetizing factors. As we are modelling the 
sample by an infinite medium, we ignore the relationship between H,, and am. Thus we 
consider the magnetic field as given and we call it an exterior field unless it differs from 
Hat. Notice also the very important fact that Ho and MO are not assumed to be constant. 

Let us expose the calculus in a slightly different way to [SI. At order E O ,  it is found 
that 

MO A Ho = 0 
a,"(H,r + M;) = o 

and for s = y .  z 

a,"(yHl + M i )  = 0. 

The constant y is defined by 
1 y = l - -  v=. 

Equation (14) can now be written as 

Ho = h(5, z)Mo 
where A is an arbitrary scalar function. We integrate equations (15) and (16) using the 
boundary conditions (12). and find, using (18), that 

(l+h)M,X=(l+a)m, 

(1 + hy)M$ = (1 + f f y h  (1% 

In this system, either 1 + a y  = 0, or not. In the former case, we must have 1 +Ay = 0, 
otherwise Mi = M,L = 0, and we can verify that there is only the trivial solution. Thus, 
h = a and V = m. This is the case studied by Nakata. Another solution is found 
when we do notassume 1 + hv = 0. This case will be studied in the next section. 

I (1 + hy)M;  = 0. 
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For the above value of V ,  system (18) and (19) reduces to 
Ho = LVMO 
M i  = m,. 

Mi=mm,cosO I M;=m,sine 

At order E ’ ,  it is found that there exists a function 8 = e($, z) such that 

with limt+-ooO = 0. At order E*, we obtain the expression 

and the equation verified by e which reads 
are + ; .~(a(e)~ + @e = o 

ff5D 

2(1+ ( r ) 7 ~  sin’ CO” 

where the constant J (called p in [8]) is given by 

J =  

If we put 

f = ate 
we find 

a,f + ; . ~ f ~ a , f + ~ a ; f  = o  (27) 
which is the mKdV equation. It is known that this equation is completely integrable by the 
inverse scattering transform (IST) method, and related to the KdV equation by the Miura 
transform [12,13]. 

The onesoliton solution of (27) reads 
2a 

= cosha(c - pt) 

with a’ = p f J and p an arbitrary positive constant. 8 is then given by 
2 

coshZa(c - p r )  
case = 1 - 

where 0 increases from 0 to 2rr or decreases from 2ir to 0, depending on the sign of a. Notice 
that the function f, which obeys the mKdV equation (27), can be considered as the derivative 
of the angle 0 (the angle of precession of the whole magnetization density vector around the 
propagation direction) and can also be considered as the amplitude of the first-order term 
M; of the longitudinal component of the magnetization density. Equation (27) describes a 
weakly nonlinear phenomenon, thus the amplitude of the wave should be small. A peculiar 
feature is that the varying function 0 is of order zero, and that all the magnetization density, 
with its saturation norm, rotates. However, such a rotation does not require a large amount 
of energy if the angle between two consecutive spins is small enough, that is, if the typical 
variation length of the wave is large enough. This is the hypothesis corresponding to the 
use of the slow variables (IO). The fact that the function f ,  which is governed by the mKdV 
equation, is precisely the derivative of 0, which compares to E ,  also corresponds to this 
condition. 

This propagation mode has been introduced as a limiting caSe of small-amplitude waves, 
but it is, in fact, of finite amplitude. It is known that finite-amplitude waves can propagate 
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in a ferromagnet [7, section 2.11. Using our notation, the corresponding solution of system 
(3) and (4) is given by 

sinqsin8 
am cos9 - w 

am sin y,  sin 8 
H = (amsin(acos8) 

where m. a, and y,  are constants, and 

B = k x - w t  

k l + a  

(32) 

(33) 

Comparing expressions (30) and (31) with (2OH22), we see that Nakata's solitonic mode 
can be interpreted as a limiting case of this solution for small values of w and k. 

3. A propagation mode governed by the KIIV equation 

The dispersion relation (7) has two-branches with a finite slope U = wk at the origin. For 
one of these branches we have just seen that in the long-wave approximation, the waves are 
governed by the mKdV equation. The question that naturally arises is: what do the waves 
that belong to the second branch look like. We intend to give an answer in this section. 

where we gave equations.(l8) and (19) of the perturbation scheme at order so, we left 
aside some solutions. Under the same hypothesis, we can prove that the function h must 
be constant. If we take the scalar product of the basic equation (4) with M ,  we find that 

M .  &M = 0. (34) 

Thus, I(MI( is constant. At order E', this implies that llM0ll is constant. If 1 fay # 0 
then 1 + A y  is always non-zero, and we can write the condition 11 MO 11' = m: + m: as 

(1 +a)'m:(I +AY)' + (1 +ay)'m?(l +A)' = (mz + m?)(l+ hy)'(1 +A)' (35) 
h is a solution of this fourth-order polynomial equation and, thus, is constant and equal to 
a. It follows immediately that in this case HO and MO are constant. 

Still using the stretching expression (10) and the expansion (1 l), we find at order &I 

that 
-wx, 

M I  = m l g  (36) 

where 

p = = + l W  (38) 

and g = g(6, 7) is an unknown function. 
At older E ~ ,  the condition needed for the function g to differ from 0 is 

pm: + y(1+ a)m: = o (39) 
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that is 

o( + sin' (o 

We compute HZ and'Mz in terms of a second unknown function f, and h. The compatibility 
condition for equation (4) at order &3 leads to an equation for g of the form 

where p is a real constant. (41) has no non-trivial bounded solution, thus g = 0. Thus, 

This requirement could also have been found in the following way. We intend to find 

a&*) = pg2 (41) 

NI = 0 and Mi = 0. 

a propagation mode described by the KdV equation which reads 

The scaling that we use must be consistent with the homogeneity properties of this equation, 
thus the transformation 

a,g + Aga,g + sa;g = 0. (42) 

i = & g  1 

6 = E m X  = &m(X - Vt) 
t = E"t  

(43) 

(44) 
must give a result independent of the E used in equation (42). We find 

Thus, choosing m = 1, 2 = 2 and n = 3, we obtain the scaling (IO) and (11). with 
E r 1  = MI = 0. 

Thus, it is the term of order 8' in the expansion of the fields that will be described by 
the nonlinear equation (KdV). This can be interpreted in the following sense. Observed at 
the same time and space scales as previously, the propagation mode considered here will 
have the behaviour described by the KdV equation (formation of solitons, and so on) for 
much smaller wave intensities as does the previous mode. For higher intensities, the weakly 
nonlinear approximation will no longer be valid, and nonlinear effects of higher order are 
expected. Thus, we have 

with hl, m1 given by (36) and (37). At order c3, we obtain the compatibility condition 
(39), the velocity V given by (40), and the expression 

(46) H3 = hl f - V-e&g 

E + n  = 21 + m = 1 +3m. 

MZ = m l g  HZ = h l g  (45) 

mz 
mr 

where f is an unknown function and 

(47) 
m, 
mt 

M3 = mlf + yV-e&g. 

We call e,, e,, e, the vectors of the reference frame. 

M i  = - H i  = -pmx+ 
The compatibility condition at order c4 is trivial and we find 
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At order zs, equation (4)  reads 

-V+M,+ a,Mz = -(MO A H5 + Mz A H3 + M3 A Hz + MSA Ha). 

-Va,m. M4 + a,m . Mz = m . (MI A H3 -+ M3 A HI). 

(52) 

(53) 

Taking the dot product of (52) with m, we obtain the compatibility condition 

Using the results of the preceding orders, we reduce this equation to the KdV equation (42), 
with ~ 

The KdV equation (42) describes weakly nonlinear dispersive waves in various branches 
of physics. This has been extensively studied, is completely integrable by the IST method 
[14], &d admits soliton solutions that are peculiarly stable. A description of the solution of 
the Cauchy problem for the Kdv equation in terms of its solitonic components has been tested 
in the case of water waves and it gives really good accuracy in relation to the experimental 
data; [U] gives an abundant bibliography. 

Let us write the soliton solution of equation (42): 

where k is an arbitrary real constant. The soliton velocity is proportional to B and its 
amplitude to B / A .  As the angle 'p between the propagation direction and the exterior field 
tends to zero, A tends to zero and B tends to infinity. Thus, the soliton velocity and its 
amplitude become large for propagation nearly parallel to the exterior field. As 'p tends to 
n / 2 ,  A tends to the finite limit 3/201, and B tends to zero.  both the soliton velocity and 
amplitude become small in this case. The limit equation is 

(58) 
3 

arg + -ga,g = 0. 201 
This equation is solvable by the method of characteristics, and leads to shock solutions [16]. 
The discontinuity of these shock solutions disappears when taking into account higher-order 
nonlinear terms, or damping. A Burgers' equation has been derived from the same model 
with the addition of a damping term and for the same propagation mode but at other time 
and space scales. Its coefficients disappear as 'p + n / 2  [171. 

Note that, in contrast with the mKdV mode, the present solitonic mode is. of small 
amplitude. Let us linearize system (3) and (4),  as at the beginning of section 2. The 
eigenvectors obtained for the field H and the magnetization M ake 
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with 
k2 
09 

y' 1 - - p' = 1 +my'. 

As w tends to 0, o/k tends either to the value U, or to u2 (equations (8) and (9)). In 
the latter case, y' and p' tend to y and /I, with their values as in the present section. Thus, 
at the limit 

hi is proportional to hl if the determinant 

is zero. This is equation (39). In the same way, mi is proportional to ml. Thus this 
propagation mode can truly be considerated as a limiting case of the small-amplitude 
oscillating wave, as both wavenumber and frequency tend to zero. 

It is not possible to describe Nakata's mode in the same way by an analogous limit. 
Let o and k tend to zero, keeping o / k  close to u1 = m. Then p' tends to zero 
and, thus, m; and h; vanish. Therefore, we choose other eigenvectors, say my = m), /p ,  

(7) to be 
h" - - hi Jp'. The asymptotic value for p' can easily be found from the dispersion relation 

Thus, 

and, thus, h;,z tends to infinity, while hy,z and h;? have finite limits. Hence, Nakata's 
solitonic propagation mode cannot be considered as a limiting case of a small-amplitude 
oscillating wave, in contrast to the KdV propagation mode. 

4. Equations that describe the interaction of two solitary waves 

The two propagation modes described respectively in sections 2 and 3 may interact In this 
section, we derive the equations that govern this interaction by using a multiscale expansion. 
Naturally, the time, space and amplitude scales at which the interaction occurs are not the 
same as previously: self-interaction of one wave occurs at one scale, self-interaction of the 
other wave at a second scale, and interaction of both waves at a third scale. 

In order to study an interaction between two waves with different group velocities, we 
must consider time and space scales of the same order. We define 

f = EPX 

5 = E P t  I 
where E is a small parameter and p a positive integer. We expand H and A4 as in (11) 
and c a q  it over to the system (3) and (4). After some trials, we see that the correct choice 
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for p is p = 2. Let us put E' = E', and identify E' (rather than E )  to the small parameter E 

used in sections 2 and 3. This way the space scales are the same in all cases, and we can 
forget that, in sections 2 and 3, we considered. a second time scale of higher order (beside 
the main time scale, of same order as the space scale, involved by the Galilean aansform 
in (IO)). 

The KdV equation for the propagation mode with speed ,/or + sin' q/(l + or) appears 
with a very low amplitude scale for the waves: it occurs for the term of order E'' in the 
expansion of H and M .  The mKdV equation was obtained by Nakata for higher-intensity 
waves. i.e. for the mode with speed m. It concerns the term of order E ' ~ .  We 
have noticed that the term of order E' varies also, but, as written above, this does not 
characterize the amplitude of the wave. The interaction equations will be obtained for 
higher intensities: the terms of order E = dl/'. Thus, the two modes should, separately, 
have a highly nonlinear behaviour at this scale. 

Let us solve system (3) and (4) through the expansion (11) and (66), using the boundary 
conditions (12) and (13), order by order. At order E O ,  we find 

Ho = Ut, 7)Mo 
H t  + Mi = (1 +a)m, (67) I a;(H,s + M;) = a;H; s = y ,  z. 

System (67) does not exclude a priori a solution with a varying M;. However, in the 
previous sections M t  was const&, therefore, and for the sake of simplicity, we will assume 
that this is also the case here. Thus h is also constant: A or, and the third equation in 
(67) reduces to 

(a: - v,2a;)M: = o s = Y ,  z (68) 
with 

Mi and Mi may propagate with the speed VO, corresponding to a wave of Nakata's mode. 
Because this wave appears at order EO and we use a perhubative calculus, it is not affected 
by the following terms. However, the reaction of the second wave on this wave will affect 
the term of order E of the same wave although it cannot appear on this first term. 

At order E ~ ,  we find that there exists a function f = f ( 6 ,  t) such that 

1 
M' - -(U: - fM:) s = y,z. ' - o r  

Furthermore, we obtain the evolution equations for Hr, H;: 

At order E ~ ,  we first find the condition 
a m o  = - M ~  A [ H ~  - O ~ M ~ I  - iw1 A H ,  . (73) 

Using (70) and (71) and taking the dot product of (73) with MO, we find that IllMoll is 
a constant, as has already been proved in section 3. The solution to equation (68) is, for 
s = y , z ,  

(74) M' ;= ,I+ d ( t -Vot ) fm;- ( t+Vot)  
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where mi’+, mi,-, m:’, m:-, are four arbitrary functions. Introducing this solution into the 
condition 0, or mt- = mz,- 0 -  = 0. 
Without loss of generality, we choose this latter case. Thus, we define a function 0 such 
that 

+ (MO)* = m:, we see that either mg’+ m:+ 

Mi=m,cosB 

MG=m,sin0 (75) 
e = e(c - w. 

Putting 

Mi’ = M!+iMJ 
H;=H,?+iH! J 

for each j ,  we see that, using (75). expressions (70), (71) and (72) can he written as 

Equation (73) can be written as 

-areex f [HZ - aM21 - 
L-f 

Thus, there exists a function h = h(5, r )  such that 

f -areex + [H2 - aM21 - -HI  = hMo. 
a 

We have 

and 

(79) 

At order s3, we have the equation 

= -MO A [H3 - CLM~]  -[Mi A H2 + M2 A Hi] .  (83) 
Taking the dot product of equation (83) with MO, we obtain, after some computation, 

(84) 

Elimination of f between equations (84) and (78) leads to the system we seek. We 

m, = -(a,B)(sinBH: -COSOH;). 
ff 

define the two quantities 

That is, 
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UI is a transversal component of the field H I ,  parallel to (z), the component of the field 
MO in the plane perpendicular to the propagation direction. @ is the component of H I  
perpendicular to both the propagation direction and the field MO. Equation (84) can be 
integrated once to yield 

where m2 = m: + m;, and 

rr+sin’rp 
l+a! 

where VI is the velocity of the wave of the KdV mode. 
Using (87), and definitions (85) and (86), equation (78) can be written as 

Equation (89) can be reduced to the system of two real equations given as 

Note that VI > VO > 0 for rp # 0, n, and thus 

System (90) and (91) is a linear hyperbolic system with varying coefficients depending on 
the function 8 = 8(c - Vor). 

@ propagates at velocity VO, thus belongs to Nakata’s mode. w, propagating with 
velocity VI, represents the Kdv mode. This last feature can be easily verified by setting 8 
constant (8 = 0) in system (90) and (91). Then 

We choose the following particular solution to system (93) and (94): 

Y = w(< - vls) 
@ = 0. 

Then, using (87). (U), and (70) and (71), we find 

using the relation 

sin’ rp 

v,” 
/A.=- 

(95) 

(97) 
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and putting 

Y. 
(1 + g =  

(96) is identical to equation (37) which gives the same term, in the frame where we derived 
the KdV equation for the function g. Thus Y represents the propagation mode studied in 
section 3. 

Let us now show that Q can be considered as a correction term to 8.  We look for 
solutions to system (90) and (91) for which Y = 0. We must have 

and 

We obtain a solution with 

@ = @(( - VoT). 

H;: = 0 because Y = 0, and 

Hr = -@sin0 
H: = Q C a e .  1 

Let XI = HY + iHz, 

HI = H,I + E H :  + o ( E ~ ) .  

Using (75) and (IOZ), 

We can write this as 

Thus &/mt is the correction to order E to the wave 0. 
System (90) and (91) describes the interaction between the two waves Y and B+EQ/m,. 

This interaction is by itself nonlinear, but the use of the multiscale expansion forced us to 
treat 0 as given data, and to drop correction terms of order higher than e#/m,,  and therefore 
the obtained system is linearized. The dependence on the wave 9 is, however, nonlinear. 

5. A resolution of the interaction system 

5.1. Introduction 

Defining A = Vl/V: and T = VOT, system (90) and (91) can be written: 

(atZ - M;)Y = f 
(atZ - a;)@ = g 
f = (1 - ~ ) e 9  + 26‘(at + ar)# 
g = -[ze’(at + haT) + (1 - A)e”llv 

(106) 

(108) 
(109) 

(107) 
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A €10, I[ is a constant, and 0 = 0($ - T) a given function. We intend to solve this system 
for the following initial conditions: we assume that, at T = 0, Y(f, 0). aT\y($, 0), @($, 0), 
aT@($,  0) are~given. 

First we put it into an integral form. Under the general physical assumption that, 
at T = 0, the correction term CP is zero, and B and Y are separated, rY is defined by 
equation (123) with the operator C. given by (129) and @ by equation (115). with the 
operator LI given by (1 16). Then, we compute explicit solutions in the particular case where 
the initial conditions are the following: 0 is an even continuous function that approaches 
the distribution 2z6(e - T), and, before the interaction, Y = g($ - UT), where g is a 
continuous localized function. We still assume that, at this time, 0 and ‘4 are separated, 
thus g(0) = 0, and @ is zero. Computation of V leads to expression (155). A transmitted 
and a reff ected wave arise, and transmission and reffexion coefficients are computed. Finally, 
the correction term @ to 8 is computed; it is given by formulae (177), (178) and (181). 
This term is interpreted as the appearance of a reflected wave, and a phase shift. 

5.2. Integral form of the interaction equations 

We put 

Using the change of variables 

and acting as i f f  were a known function, we can write equation (106) in the integral form: 

Y(t ,  T) = L’dT’J de’ f (t’, T‘) + / dc’arY(t‘, 0) 
$+n(T-T’) $+UT 

2 p-u(T-T’) +“T 

+~rY(e-uT,O)+Y($+uT,0)1.  (112) 
In an analogous way, equation (107) can be written as 

+i[O(e - T, 0) +?(e + T,0)1. (113) 
Because @ is physically a correction to 8, we can assume, without loss of generality i?om 
the physical point of view, that 

Q(t.0) = O  and ar@(t, 0) = o for all t .  (1 14) 

@ = C*Y (115) 

Thus @ can be expressed as a function of \y: 

with 
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Yo is the solution of the equation 
(8: - A@)Yo = 0 

with the initial conditions 

for any function U. Using this notation, equation (112), with f given by (lOS), reads as 

Y=.C2Y+C34+Yo. (122) 
Using (115), we get 

Y = C Y + Y o  
with 

e'= e* + e&, (124 
Then the resolution of equation (123) is theoretically easy: we construct a recurrent sequence 
Yo, Yl,  Yz, . . ., such that Yo is the given function and, for each n, Yn+l = LYn. Then (if 
we assume that the series converges): 

m - 
Y = C Y n  (125) 

"=O 
is the solution to equation (123) [IS]. 

To obtain a suitable expression for L, we first derivate 4 = &Y to obtain 
T 

(a, + aT)4(t, T )  = -/ aTtg(t + T - T I ,  T I ) .  (126) 

Then an inte,Qtion by parts removes the term proportional to 6'" in the integrand of (126). 
We have 

0 

I d  
2 dT' 

e"(t + T - 2 ~ ~ 0  + T - T', T I )  = ---(e'($ + T - 2 ~ ' ) ~ ( t  + T - T', T I ) )  

+$9'(6 + T - 2T')(-3~ + ar)Y(t + T - T', T'). (127) 
Thus 

-(1 -A)  (ae + aT)4(t, T )  = re'o - OW, T )  - 6 ' ~  + T)W + T ,  011 
T 

+; ai-'e'(t + T - 2 ~ ~ ~ 3  + u a ,  + ( 3 ~  + i)aTiwt + T - T', T I  

(128) 
In the expression for f ,  the term proportional to B R  cancels the term proportional to e'(.$-T) 
of formula (128). If we assume that the two waves 0 and Y have separated supports at 
T = 0, we have e'(: + T)Y($  + T ,  0) 0. Thus we obtain 
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5.3. Explicit resolution for particular initial data 

The only hypotheses that we have made up to this point are: @ is zero at T = 0 and 8 and 
Y have disjoint supports at T = 0. To go further in the computation, we need additional 
hypotheses on the shape of the input waves YO and 8. 8 describes a Nakata-mode wave. 
Therefore the following choice seems particularly interesting: 8' should look like a soliton 
of mKdV, which is given by equation (28). It has a localized bell shape, and vanishes 
quickly at both +w and --CO in time and space. In the same way, YO should look like 
a soliton of the KdV, which is given by equation (57), and bas analogous ch&acteristics. 
In order to perform an explicit calculus, it seems useful to model the bell shape of these 
waves by simple initial data, such as delta functions, for 8' and YO. This would describe 
an asymptotic case, as the typical length of the solitons is very small in regard to the space 
scale at which the interaction occurs. 

Let us show that this requirement is consistent with the scalings. Consider two given 
input solitary waves 0' and Yo. A scale parameter EO is defined by their amplitude. The 
mKdV equation (27) concerns a first-order quantity, thus for the mKdV mode, the parameter 
E in (10) is equal to E& and the typical length of a soliton of this mode is 

(L  being a length of order unity). The KdV equation (42) concems a second-order quantity, 
thus in this case E = ,,& and the typical length of the KdV soliton will be 

(131) 

The interaction system (90) and (91) concerns first-order quantities, but the scaling is 
different (66), thus E = EO, but the typical length of the interaction process is 

Therefore, while EO << 1, 

Lint >> LmKdv >> LKdv. (133) 
The choice of deIta functions for the initial data is therefore physically consistent. However, 
for mathematical reasons, it is not possible to make this choice directly, and we must reason 
on continuous functions. Furthermore, we want to make the minimal assumptions necessary 
to perform an explicit calculus. In a first stage, we only assume that 8' is a regular function 
localized in the interval ($ - T) E [-b, b ] ,  with b > 0. 

In a second stage, we will let b tend to zero. Furthermore, we will assume that 8' 
is even, and that h e '  = 2z,  which is true for a soliton of the mKdV equation (27). We 
choose for YO an arbitrary regular and localized function g(t - UT), with g(0) = 0 (no 
further assumption is needed). For mathematical reasons, it is very difficult to make another 
choice. Thus, physically, we assume that the spatial extension of the Nakata-mode wave 6" 
is small with respect to the space scale of the interaction, hut also to the variation scale of 
the second wave Y. According to the inequalities (133), the first assumption is consistent 
with the interpretation of the incident wave 8' as a soliton of Nakata's mode. The second 
assumption implies that we observe the propagation mode that can support KdV solitons, at 
a space scale which is very large with respect to the size of these solitons. The solitary 
wave Y under consideration will therefore be a long pulse, containing a very large number 
of solitons, and the present treatment of the interaction system will disregard the solitonic 
structure of this pulse, and act only on an averaged amplitude of the wave. 
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Let us first evaluate Cu for an arbitrary function U. Cu is an integral over a domain V 
in the (e', T', T") space, that is a tetrahedron of vertices (e, T, 0), (e, T ,  T ) ,  (e+ UT, 0, 0), (e - UT, 0.0). We use the change of variables 

Then 

Cu = -U //k, dxdydzB'(x)B'(y)h 
4 

where 

h = [ ( 3 + h ) 3 g + ( 3 A + l ) a ~ ] u ( c ' + T ' - T " , T " )  (136) 

and D' is D transformed by (134). Using the fact that 6" is localized, we restrict the 
integration domain to V I  = 2)' n D", where D" is the set of the points ( x ,  y, z) for which 
-b < x < b and -b < y .  < b. The transform of 'Dl into the ($', T', T") space is a 
tube about a straight line D directed by vector ( 1 , l . l ) .  D flV is a segment [0, A] where 
A =  A ( ( ,  T I ( ; ) ,  with 

We assume that we observe the phenomenon at a space and time scale which is large 
with respect to the duration of the pulse 8'. thus b takes very small values. After some 
geometrical work, we see that, neglecting the terms of higher order in b, 

Now we assume that YO has the form 

WOE, T) = 8 0  - UT) (139) 
where g is a regular and localized function. Recall that at t = 0, the supports of the two 
waves are assumed to be disjoint. Thus we have 

g(0) = 0. (140) 

We intend to compute Yl = CYo. Using (136) and (134), we compute h for U = YO: 

As b becomes very small, only values of x and y very close to zero are to be taken into 
account in (138). Thus, h being cofitinuous, we can replace h(x, y, z )  by h(x = 0, y = 0, z ) ,  
and equation (138) becomes 
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Let us call I the first integral. We note that a permutation o f x  and y does not change its 
value, thus 

and 

l e ‘ ( x ) d x  = s’(x)dx =s(+m)-e(-w). (144) 

At infinity, there are no waves thus the direction of MO i s  defined by the exterior field, 
thus 0 is zero modulo 27r at fw. For the sake of simplicity, we choose f, O‘(x) dx = 27r, 
which corresponds to one soliton of Nakata’s type. Thus I = b2. The second integral in 
(142) is immediately computed using (141) and (140). Finally 

s, 

Thus we have 

VI &-(U - 1)A(t. ‘0). (146) 
Let us therefore compute Cu for a more general function u(E, T )  = G(A(6, T ) ) ,  G being 
a regular localized function with G(0) = 0. From (136) we get 

(147) h = [(3 + A)@A) + (3A + I)(-%A)IG’(A(Eo, To)) 
with 

( t O J 0 )  = (~(X+2z+Y).f(x+2z-Y)) .  (148) 
This leads to some difficulty because as x = y = 0, h does not exist. A is not differentiable 
on the line E = T .  The derivatives of A(5, T )  have different expressions for 60 > TO 
( y  > 0) and for $0 c (y c 0). Thus 

We divide the integration in formula (138) into two parts corresponding to y =- 0 and y < 0. 
We assume that 8‘ is an even function. This is true if 6” has the shape of a mKdV soliton. 
Thus 

dx dy e‘(x)e’(y) = ;z2 ih${ 
and 

We thus find that 

(152) 
R2 CU N --(U’ - U + l)G(A(t, T)).  
2u 

We can now evaluate the solution Y given by (125): 
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The series does not converge. However, if the assumption JR 8' = 2n is repiaced by a less 
physical one Jw 8' = 2 p ,  p arbitrary, it does converge if 

We have only to verify that the solution obtained can be continued in a solution to 
equation (123) even as p = x .  This is easily done by direct computation using (145) 
and (152). 

Then 

n2(u - 1)2 1 
g(-(u - 1)A($, TI )  2u 1 + (7?2/2u)(u2 - U + 1) w, T )  = g G  -UT) - 

A($, T )  is given by (137). 
For T < $ < UT, -(U - l)A($, T )  = $ - UT, and we can write 

W$> T )  = l g ( $  - W .  
7 plays the role of a " m i s s i o n  coefficient and has the expression 

or 

u(2+nZ) 
2u + a2(u2 - U + 1) 

7= 

As -UT < $ < T ,  -(U - 1)A($, T )  = -%(e + UT), thus we can write 

The term -Rg(-%($+uT)) represents a reflected wave, and R is a reflection coefficient. 
We have 

and 

R + 7 = 1  

5.4. Computation of the correction term @ to the wave 8 

Now we have to compute the second wave @. @ can be expressed as a function of W 
through equations (115) and (116): 

An integration by parts removes the term in e", and @ can be divided into three terms: 
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with 

T 
@&, T) = 1 dT'8'($ + T - 2T')W(.$ + T - T', T') (165) 

4&, T )  = 1;' dT'Y($ - T + T', T'). 

Under the preceding hypothesis, we can replace O'(X) in (165) by 2rrS (X) ,  thus 

otherwise. 

To evaluate 01, we first write 

T )  = g(c - +gl(A(c, T ) )  (168) 

g1'(u) = -Rg(-(v - 1)u). (16% 
According to (168), the integrand in (164) can be divided into two parts, hl and hz. The 
first term corresponding to g is evaluated: 

with 

and replacing O'(X) by &S(X), we compute the corresponding term @,.I of 41: 

The second term reads: 

if 151 =- UT.  

Because h2(5'. T') is not continuous on the line $ I  = T', we must use a continuous function 
8' and not a delta function. For 161 < T ,  as b tends to zero, the integration domain can be 
assimilated to the rectangle 1 4 ,  b] x [O, q] in the (6' - T', T') plane. Then it is divided 
into two parts; corresponding to > T' and to e' < T'. Each part factorizes, thus we 
obtain for the corresponding term @I,Z of @ I :  

Finally, 



3782 H Leblond 

The last term is Q3(5, T). Because it appears only with the factor 8'(f - T ) ,  which 
approaches zirS(t - T), we only need to compute @3(T, T). We have 

I - 'R  
@'a(T, T) = -- G(-(U - l)T) 

U - 1  

where G ( T )  is the function defined by 
T 

G(T) = 1 g(u)du. 
0 

Finally we have 

with 
R(?? - 2) (U - I)? 1 

2 U 2 u + z ~ ( u * - u + 1 ) '  
I C =  

0 is the Heaviside function and 

Q(r) = - '+'TG(-(u - 1)T). 
2u2 

Note that, for large values of T, Q ( T )  is a constant. Indeed, if g is localized, we have, for 
large enough T, 

The part of the support of g belonging to the T > 0 does not contribute, because the 
corresponding wave rY is ahead of the wave 0, and is faster, thus they never interact. If we 
call Y = J-, g, for T large enough, - 0  

Q ( T )  =-e$ 
with 

Note that Q is always positive, and that the sign of $ depends on that of g (or Yo), that is 
the amplitude of the incident wave. 

Using (177) and (181), the complete wave of Nakata's mode, 0+&@/m,, can be written: 

with, for T large enough, 

0, is a reflected wave. It has a small amplitude, unless it belongs to the finite-amplitude 
mode. It has the shape of the incident wave of the KdV mode YO((, T )  = g(( - UT). 
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Neglecting t e e s  of order c2, the transmitted wave 0, can be written: 

Thus the wave is delayed for a time $ E @ ,  proportional to the integral s@ of the amplitude 
of the incident wave of the KdV mode. The delaying time is positive or negative depending 
on the sign of q. It can be interpreted using equations (96) and (98) and (36) and (37). Let 
bl = hl + ml, B1 = blg is the magnetic induction corresponding to the field HI = hlg 
and magnetization density MI = m l g  of equations (36) and (37). It reads: 

b: has the same sign as B i  = H$+Mi. Thus a positive g in (36) and (37), that is a positive 
Y, corresponds to a local increase in the norm of the total induction B , ~ ? d  a negative 
g - o r  W-to a propagating ‘hole’ in this induction. In the former case, the Nakata-mode 
wave is delayed, while it is brought forward in the latter case. 

6. Conclusion 

We have first described two solitonic propagation modes of ~ electromagnetic waves in 
ferromagnets. One of them is govemed by the mKdV equation, and was discovered by 
Nakata. It is a finite-amplitude mode. The second is governed by the mKdV equation and 
is, in contrast to the former, a small-amplitude mode. Note that the solitonic behaviour 
does not occur on the same scale for the two modes. At a still larger space scale (assuming 
the same amplitude scale), the two modes may interact. A partial differential system that 
describes the interaction has been derived by means of a multiscale expansion. 

The small perturbative parameter used in this expansion is related to the amplitude of 
the wave of the mode that can support KdV solitons. Because the other mode is of finite 
amplitude, it appears as a zeroth-order term in the perturbative expksion, and therefore 
cannot be influenced by the KdV wave, which is a term of first order. Thus the reaction on 
the mKdv wave is described by a third term that corresponds to a small correction to the 
finite-amplitude wave. Because this wave is split into two terms (an incident wave and the 
first correction due to the interaction) the interaction system (90) and (91) becomes linear 
with respect to the two first-order wave components. 

Note that we are not dealing here with a soliton interaction in the usual sense, which 
is the interaction between two solitons with the same propagation mode, described by a 
two-soliton solution of an integrable equation. Here we study the interaction between two 
solitary waves which are different in nature. Furthermore, these waves can form solitons 
only at space scales that differ from the scale on which interaction occurs. Therefore 
the usual behaviour of a soliton interaction (conservation of the shape and size, and the 
appearance of a phase shift) is a priori not to be expected here. 

The interaction system has been solved in the particular case where the duration of the 
incident pulse of Nakata’s mode is very short with respect to the interaction time (or space) 
scale. This particular case corresponds to a one-solitonic solution of the mKdV equation for 
the Nakata-mode wave, but disregards the solitonic structure of the wave of the KdV mode, 
in considering a pulse very long in regard to the size of the solitons. The wave of the KdV 
mode, which is a small-amplitude mode, is partially reflected on the Nakata-mode wave, 
which has a finite amplitude. We have computed transmission and reflection coefficients 
for this process. The other wave is also partially reflected, and is delayed proportionally to 
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the in tegd  of the amplitude of the wave of the KdV mode. This may appear as an analogue 
of the phase shift in usual solitons interaction, unless the frame is rather different. 
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